3.239 \(\int \frac{1}{\sqrt{e \cos (c+d x)} (a+a \sin (c+d x))} \, dx\)

Optimal. Leaf size=78 \[ \frac{2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d \sqrt{e \cos (c+d x)}}-\frac{2 \sqrt{e \cos (c+d x)}}{3 d e (a \sin (c+d x)+a)} \]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*a*d*Sqrt[e*Cos[c + d*x]]) - (2*Sqrt[e*Cos[c + d*x]])/(3*d*
e*(a + a*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.0724614, antiderivative size = 78, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.12, Rules used = {2683, 2642, 2641} \[ \frac{2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d \sqrt{e \cos (c+d x)}}-\frac{2 \sqrt{e \cos (c+d x)}}{3 d e (a \sin (c+d x)+a)} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(3*a*d*Sqrt[e*Cos[c + d*x]]) - (2*Sqrt[e*Cos[c + d*x]])/(3*d*
e*(a + a*Sin[c + d*x]))

Rule 2683

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(g*Cos[e
 + f*x])^(p + 1))/(a*f*g*(p - 1)*(a + b*Sin[e + f*x])), x] + Dist[p/(a*(p - 1)), Int[(g*Cos[e + f*x])^p, x], x
] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && IntegerQ[2*p]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{e \cos (c+d x)} (a+a \sin (c+d x))} \, dx &=-\frac{2 \sqrt{e \cos (c+d x)}}{3 d e (a+a \sin (c+d x))}+\frac{\int \frac{1}{\sqrt{e \cos (c+d x)}} \, dx}{3 a}\\ &=-\frac{2 \sqrt{e \cos (c+d x)}}{3 d e (a+a \sin (c+d x))}+\frac{\sqrt{\cos (c+d x)} \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 a \sqrt{e \cos (c+d x)}}\\ &=\frac{2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d \sqrt{e \cos (c+d x)}}-\frac{2 \sqrt{e \cos (c+d x)}}{3 d e (a+a \sin (c+d x))}\\ \end{align*}

Mathematica [C]  time = 0.039761, size = 64, normalized size = 0.82 \[ -\frac{\sqrt [4]{2} \sqrt{e \cos (c+d x)} \, _2F_1\left (\frac{1}{4},\frac{7}{4};\frac{5}{4};\frac{1}{2} (1-\sin (c+d x))\right )}{a d e \sqrt [4]{\sin (c+d x)+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])),x]

[Out]

-((2^(1/4)*Sqrt[e*Cos[c + d*x]]*Hypergeometric2F1[1/4, 7/4, 5/4, (1 - Sin[c + d*x])/2])/(a*d*e*(1 + Sin[c + d*
x])^(1/4)))

________________________________________________________________________________________

Maple [B]  time = 0.914, size = 190, normalized size = 2.4 \begin{align*} -{\frac{2}{3\,da} \left ( 2\,\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) +2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) -\sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) \left ( 2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) ^{-1} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}e+e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x)

[Out]

-2/3/(2*sin(1/2*d*x+1/2*c)^2-1)/a/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*(2*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/2)*sin(1/2*d*x+1/2*c)^2-(2*sin(
1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*sin(1/2*d*x+1/2
*c)^2*cos(1/2*d*x+1/2*c)-sin(1/2*d*x+1/2*c))/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{e \cos \left (d x + c\right )}{\left (a \sin \left (d x + c\right ) + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(e*cos(d*x + c))*(a*sin(d*x + c) + a)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{e \cos \left (d x + c\right )}}{a e \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a e \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*cos(d*x + c))/(a*e*cos(d*x + c)*sin(d*x + c) + a*e*cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))/(e*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{e \cos \left (d x + c\right )}{\left (a \sin \left (d x + c\right ) + a\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))/(e*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(e*cos(d*x + c))*(a*sin(d*x + c) + a)), x)